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Spatial accessibility to COVID-19 testing sites and its driving factors 

in New York City 

 

Abstract 
During the COVID-19 pandemic, low access to medical resources has brought inconvenience and health 

challenges. Given the unequal distribution of healthcare facilities, it is crucial to understand how people 

access medical resources in both urban and rural regions, especially from a transportation perspective. 

This study measured the spatial accessibility to COVID-19 testing sites and its influencing factors in New 

York City (NYC). The clustering patterns of testing sites were identified through spatial autocorrelation 

and kernel density analysis. Integrating walking, car driving, buses, and subway modes, a multimodal 

network was built to present spatial accessibility scores. Several demographic and socioeconomic 

variables influencing the spatial accessibility were analyzed based on the Geodetector model. We found 

that accessibility to testing sites is heterogeneous across NYC and among different travel modes. 

Geodetector showed that the COVID-19 positive rate, population density, and the testing site density are 

strong indicators affecting the spatial accessibility. There is an evident trend of enforcing interaction 

between various risk factors. These results provide urban and health planners suggestions on how to 

ensure adequate and equitable access to COVID-19 testing sites. 
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1. Introduction 
With emerging new variants, COVID-19 has continued to spread in the Unites States, posing health and 

socioeconomic threats. At the outbreak of COVID-19, New York City (NYC) became the pandemic 

epicenter (Cordes & Castro, 2020). Fueled by the Omicron variant, a single-day peak of 50,803 COVID-

19 cases was reported in NYC on January 3, 2022 (Kekatos, 2022). The surge of confirmed cases has 

exacerbated some challenges that many cities like NYC are facing, such as the unequal distribution of 

medical resources and the insufficient supply of COVID testing packages and vaccination. The increased 

demand and the limited supply of healthcare and medical resources have reflected and even worsened 

racial and socioeconomic disparities. 

Testing sites are important public facilities in the prevention and protection of COVID-19. Public transit 

provides people a convenient and effective means of accessing testing sites given its large transportation 

volume, speed, and punctuality. However, most transit facilities are only accessible where the population 

is more concentrated and socioeconomic activities are more active (Chen et al., 2017). Consequently, 

people living far away from the public transport have restricted access to testing sites. Considering 

vulnerable groups, especially the elderly, who may have limited mobility or financial resources, health 

and policies planners should ensure that access to COVID-19 testing sites is adequate and equitable 

across all socioeconomic groups (Duffy, Newing & Gorska, 2021; Tao et al., 2020). 

A plethora of studies have focused on the measurement of spatial accessibility to health-care services. 

One commonly used method for measuring spatial accessibility is the floating catchment (FCA) method, 

proposed by Luo and Wang, for examining spatial accessibility to primary healthcare in Chicago (2003). 

In the context of COVID-19, there have been some modifications to FCA methods in the examination of 

accessibility to healthcare resources. The three-step floating catchment area (3FSCA) method is used to 
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identify the spatial accessibility of COVID-19 patients in Florida (Kim et al., 2021). Considering the 

available hospital capacity and the average travel time to the hospital, Escobar et al. (2020) used the 

enhanced two-step floating catchment area (E2SFCA) method to evaluate the current ICU supply in the 

Manizales-Villamaría Metropolitan Area. One limitation of the FCA-family method is that the demands, 

supplies, catchment size, and spatial interaction functions are considered as static and fixed values. 

However, in the context of COVID-19, those variables undergo spatiotemporal change. Without the 

consideration of fixed supply and demand capacities, another typical method that estimates spatial 

accessibility is to establish a road network dataset to calculate the O-D travel time matrix (Wang & Wang, 

2022). Silalahi et al (2020) created the O-D Cost Matrix from the GIS-based network, where the nearest 

referral hospitals of COVID-19 confirmed cases locations could be decided in Jakarta. Likewise, a study 

by Stentzel et al (2016) realized the accessibility to medical care facilities through the O-D cost matrix. 

There are still some problems with regards to assessing spatial access to the healthcare facilities during 

the COVID-19 pandemic, as the demand for medical resources has increased dramatically (Ghorbanzadeh 

et al., 2021). Much research has focused on the county level of the accessibility measurement of a whole 

state (Kim et al., 2021). However, investigating a micro-level region, such as a census tract or block 

group, will be more meaningful because in reality, people tend to travel across tracts rather than counties 

to access COVID-19 medical resources in a timely manner. In addition, most studies have only 

considered one travel mode, especially driving, in the measurement of accessibility. However, when 

accounting for a city, accessibility by different transit modes (personal vehicles, walking, and public 

transit) should be analyzed and compared, as the multimodal network is a fundamental component of a 

city, which connects health facilities with people (Del Conte et al., 2022). Much research has analyzed the 

relationship between confirmed cases and their influencing factors (Cordes & Castro, 2020), or between 

the medical resource distribution and demographic factors (Grigsby-Toussaint, Shin & Jones, 2021). 

However, few studies have explored the driving factors of spatial accessibility to medical resources, 

especially from a geographic perspective. Revealing the influencing factors of accessibility to healthcare 

facilities will help urban planners better understand the cause of medical resource inequity so that they 

can utilize and allocate medical resources rationally. 

Based on these challenges, this study focused on accessibility to COVID-19 testing sites in NYC, which 

has a highly diverse population of 8.8 million people spread across five boroughs interconnected by a bus 

and subway system (U.S. Census Bureau, 2021). Three research issues were analyzed. First, the spatial 

clustering pattern of COVID-19 testing sites was identified through spatial autocorrelation and kernel 

density estimation methods. Second, both the transit and non-transit road networks were developed and 

compared. By integrating and analyzing the transportation and geographical data, the GIS-based network 

could be used to build an O-D cost matrix, which could evaluate the accessibility from origin to 

destination through different travel modes. Finally, the Geodetector method was applied to identify the 

influencing factors, from socioeconomic and demographic aspects, of the spatial accessibility of testing 

sites. The goal of this study was to identify disparities in accessibility to testing sites by different travel 

modes and the causes of such disparities, and then provide guidance for future efforts in allocating testing 

resources equitably. 

2. Materials and Methods 

2.1 Data collection and preparation 

Three aspects of data were employed in this study: COVID-19 testing sites, a transit network dataset, and 

potential influencing factors. According to URISA's GISCorps (2021), there are 734 testing sites in NYC. 

The transit network mainly consists of a road network, from Open Street Map 

https://covid-19-giscorps.hub.arcgis.com/apps/locate-a-covid-19-testing-provider/explore
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(https://download.bbbike.org/osm/bbbike/NewYork/) and transit stations (including subways and buses), 

from OpenMobilityData (2022). Eleven potential influencing factors behind accessibility, in terms of 

transportation, socioeconomic factors, and demographic factors, were collected and prepared according to 

Table 1. Although spatial accessibility is measured at the tract level, the zip code tabulation area (ZCTA) 

level has a greater sample size and accuracy in detecting influencing factors than the tract level. Therefore, 

the collection and preparation of influencing factors were conducted at the ZCTA level.  

Influencing factor Data source and prepare process 
Population density Gather population data from ACS first, then 

divide by the area. 

Road network density 

(categorized as transit or non-

transit based on the road types) 

Gather road network data from Open Street 

Map and OpenMobilityData. Based on NYC, 

create fishnet in ArcGIS, intersect this with 

road data, and do statistical analysis.  

Transit station density Gather station data from OSM and spatially 

join the data with NYC. 

Testing site density  Gather testing site data from URISA's 

GISCorps and spatially join the data with 

NYC.  

COVID-19 positive rate Gather COVID-19 data from NYC Open Data 

(2022) 

Other demographic data: median 

income, median age, percentage 

of white, bachelor and public 

transit as mean of commuting  

Gather from ACS 

Table 1. Data collection and preparation of influencing factors 

NYC, the study area, covers 5 counties, 177 ZCTA blocks, and 2167 census tracts in total (NYC Health, 

2022). Some influencing factors of spatial accessibility in NYC are visualized in Figure 1. The population 

density and testing site density are highest in Manhattan and lowest in Staten Island and eastern Queens 

County. Until March 20, 2022, the COVID-19 positive rate was highest in Staten Island, where most 

ZCTA blocks had about a 30% positive rate. Central and southern Manhattan had the lowest positive rate 

of COVID-19, close to 10%. There has been strong regional heterogeneity in the COVID-19 pandemic 

situation in terms of the population and medical resource distribution. It is necessary to study spatial 

accessibility and its influencing factors for urban planners to optimize the allocation of COVID-19-related 

healthcare resources. 

 

Figure 1. Examples of accessibility and influencing factor distribution: (a) population density, (b) 

COVID-19 positive rate, and (c) testing site density 

https://download.bbbike.org/osm/bbbike/NewYork/
https://transitfeeds.com/p/mta
https://data.cityofnewyork.us/browse?category=Health&q=covid
https://data.cityofnewyork.us/browse?category=Health&q=covid
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2.2 Method 

2.2.1 Spatial distribution 

Spatial autocorrelation and kernel density estimation methods were applied to investigate the presence of 

spatial clustering of testing sites. For spatial autocorrelation analysis, both global and local Moran’s I 

were employed. Moran’s I is a common measure of spatial autocorrelation in statistics. The possible 

values of Moran’s I range from −1 to 1, where low negative values suggest strong negative spatial 

autocorrelation, high positive values suggest strong positive spatial autocorrelation, and values close to 

zero suggest complete spatial randomness (Cordes & Castro, 2020). Kernel density estimation estimates 

density from point-based data. By applying a kernel function on each point and spreading the observation 

over the kernel window, it usually results in a density surface that covers the whole study area (Yin, 2020). 

2.2.2 Accessibility measurement 

In the measurement of spatial accessibilities by different travel modes, the four most dominant travel 

patterns in NYC—walking, driving, subway, and bus—were compared based on the O-D cost matrix of 

ArcGIS Network Analyst. Walking and car driving were categorized as non-transit modes, while subways 

and buses were considered as transit modes. Network is a type of linear vector data consisting of edges, 

junctions, and nodes. The network dataset can model the spatial accessibility by calculating the distance 

from nodes (Silalahi et al., 2020). The O-D cost matrix, generated from the transportation network 

analysis, is the estimation of cost (e.g., travel time, distance) between a set of origins and destinations 

(Wang & Xu, 2011). 

The key of network analysis is to define the origin and destination points for the O-D cost matrix. 

Considering the flexibility and the wide range of non-transit takers’ mobility, population weighted 

centroids were chosen as the origins of the non-transit road network. In contrast, the transit road network 

structure has bounded stations as origins. The destinations of both types of road networks were testing 

sites. For convenience and time savings, people tend to visit their nearest testing sites, Therefore, this 

study only measured accessibility to testing sites within 15 minutes of travel by different modes from 

origins. After calculating the accessibility of each origin, the IDW interpolation could be utilized to 

estimate the accessibility of the whole study region. 

2.2.2.1 Non-transit accessibility 

In the non-transit road network, the calculation of the census tract i’s accessibility could be measured 

through the following equation: 

Ai = Pi ∗ ∑
1

𝑇𝑖

0

𝑛

, (1) 

where Ai is the accessibility of census tract i, Pi is the total population number of census tract i, n is 

number of testing sites that people can access within 15 minutes, and Ti is the time people spend getting 

to each testing site. 

The road networks for walking and car driving were constructed from the OSM dataset, which contains 

information for every road segment about speed limits, distances, directions (e.g., one-way streets), and 

turn restrictions. Considering that people typically walk and drive on different types of roads, this study 

extracted common types of roads for pedestrians and drivers, as Table 2 shows. To calculate the 

accessibility, as Equation (1) shows, speeds of walking or driving on typical roads were decided, where 5 

km/h was set as the average speed people walk, while different speeds of driving were assigned according 



Anran Zheng 
Capstone final report 
MUSA 800  
 

5 
 

to the different road types. Unlike building the pedestrian road network, some restrictions were included 

in the driving road network, such as one-way driving, delay of turning, and traffic lights. As the elevation 

of NYC is relatively flat, its impact on the walking or driving could be ignored. 

Non-transit Road type Speed 

(mph) 

Walk Footway, living 

street, path, 

residential, 

service 

3.5 

Drive Motorway 50 

Primary road 40 

Secondary 30 

Tertiary 25 

Residential 15 

Table 2. Road types and speeds of walking and driving 

2.2.2.2 Transit accessibility 

 To evaluate how transit improves the accessibility, subways, and buses, two dominant transit systems 

were chosen, and their accessibilities were calculated differently from the non-transit modes. This is 

because transit routes and schedules are fixable, with given stops that travelers should take. Unlike the 

non-transit road, which was extracted directly from the OSM dataset, the transit road network for the 

subway and bus was built based on the General Transit Feed Specification (GTFS) data using Conversion 

tools in ArcGIS Pro. The transit accessibility of each stop was calculated as follows: 

𝐴𝑖 = ∑
1

𝑇𝑖
,

0

𝑛

(2) 

where n stands for the number of testing sites that can be reached within 15 minutes of taking the subway 

or buses, while Ti is the time people spend getting to each testing site, starting from stop i. 

The speeds of taking the subway and bus were set to 28 km/h and 13 km/h, respectively. To build a 

comprehensive transit road network system, the pedestrian road network was combined with the subway 

or bus route system, because when getting off the nearest stops to testing sites, people still need to walk 

for a while to reach their final destination of the testing sites. In the combination of these road networks, 

the connected junction between pedestrian lanes and subway or bus routes were built within the 50-m 

buffer zones of stops to allow people to switch from the subway or bus modes to walk. 

2.2.3 Influencing factors detection 

To understand the main influencing factors of spatial accessibility, this study applied Geodetector to study 

the association between the potential risk factors and the overall spatial accessibility across ZCTA blocks, 

which combine the accessibility of four transit modes, and its value within each ZCTA was calculated 

through zonal statistics in ArcGIS. The Geodetector method can measure the spatial differentiation and 

test its significance through the within-strata variance, which is less than the between-strata variance (Xie 

et al., 2020). To study the influencing factors and reveal relationships among these factors, this study 

employed factor detection and interaction detection from Geodetector. 

The factor detection is expressed by the q value with the following formulas (Wang & Xu, 2017): 
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q = 1- 
∑ Nhσh

2L
h=1

Nσ2  = 1 - 
SSW

SST
, 

SSW = ∑ 𝑁ℎ𝜎ℎ
2𝐿

ℎ=1 , SST = N𝜎2,                  (3) 

where the q-statistic represents the explanatory power of factor X on the spatial heterogeneity of factor Y, 

and the value of q ranges from 0 to 1; h = 1, …, L, which represents the stratification of the detector X 

and Y. The study area consists of N units, and the hth stratum consists of Nh units. σ2
h and σ2 are the 

variances in the Y value for the hth stratum and the whole study area, respectively. SSW and SST are the 

Within Sum of Squares of a layer and the Total Sum of Squares of New York State, respectively. 

Interaction detection can identify the interaction relationship between two different factors. The q-

statistics of X1 and X2, and q(X1) and q(X2), were calculated first from Equation (3). Then, the q values 

of the interaction between X1 and X2, and (q(X1 ∩ X2)), were calculated. The interaction type between 

X1 and X2 could be determined by comparing the values of q(X1), q(X2), and q(X1 ∩ X2) (Zheng et al., 

2021). 

In applying the Geodetector model, continuous risk factors should be transformed into discrete variables 

before their relationship with the accessibility is analyzed. Four typical methods of data classification, 

including natural breaks, equal interval, geometrical interval, and quantile, were implemented to 

discretize the risk factors. By comparing the q-statistics and p-value, the optimal one was chosen. 

3. Results 

3.1 Spatial distribution pattern of testing sites 

With spatial autocorrelation analysis and kernel density estimation methods, the spatial clustering pattern 

of COVID-19 testing sites is identified in Figure 2. According to (a), the spatial distribution of testing 

sites is uneven, and (b) and (c) further confirm the hotspot distribution in NYC. The testing sites are 

mainly clustered at Manhattan and southern Bronx, while numerous cold spots appear in Queens County 

and Brooklyn County. Given the z-score of 16.52 from Global Moran's I Summary, the testing sites are 

spatially clustered in NYC. 

 

Figure 2. Spatial distribution of COVID-19 testing sites in NYC: (a) number of testing sites 

contained in each tract, (b) kernel density estimation of testing sites, and (c) hotspots of testing 

sites 

3.2 Geographic patterns of accessibility 

Figure 3 shows the spatial accessibility of walking and driving. The walking accessibility indicates a 

tightly clustering distribution pattern, which is highest in Manhattan and decreases gradually to the edge. 

In contrast, the distribution of driving accessibility is random, with the few highest regions being in 
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Manhattan and Brooklyn, Queens, and Staten Island. The accessibility is enhanced significantly from 

walking to driving, because ideally, with driving, people can access more testing sites within a shorter 

time. However, in reality the driving accessibility will be less than these study results show, considering 

the traffic congestion and parking issues. 

 

Figure 3. Non-transit accessibility to testing sites within 15 minutes: (a) walking, (b) driving 

The calculated transit accessibility is shown in Figure 4. Transit accessibility is highest in Manhattan and 

decays gradually to the boundary of NYC. Most regions are more accessible to subways than buses, as 

typically, subways have shorter wait times and hardly encounter traffic jams even though there are many 

more bus stations than subways in NYC. 

  

Figure 4. Transit accessibility to testing sites within 15 minutes: (a) subway and (b) bus 

The overall accessibility layer could be generated by combining the accessibility of four different transit 

modes through the raster calculator in ArcGIS. As Figure 5 shows, Manhattan has the highest access to 

COVID-19 testing sites, which is expected because of the dense road network and the concentrated 

distribution of testing sites. Beyond the downtown area, access values decrease quickly owing to the 

limited transportation infrastructure. However, as there are several tracts in Brooklyn, eastern Queens, 

Staten Island, and Bronx still have relatively high access to testing sites. Thus, it is clear that the testing 

site accessibility varies greatly in NYC. 
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Figure 5. Overall accessibility to testing sites in NYC 

3.3 Influencing factors of accessibility 

There is obvious variation in accessibility to COVID-19 testing sites in NYC. Geodetector was applied to 

analyze the driving factors in this distribution pattern and their interaction. Four various methods of 

classification were utilized in the discretization of influencing factors as table S1 shows. Both the q-

statistics and p-values generated from each method were compared to find the best discretization method. 

Quantile was chosen in discretizing the influencing factors. 

As Table 3 shows, the q values for all chose detection factors pass the significance test at 5% level, 

suggesting that all these factors have a significant determination ability of spatial accessibility. The q-

statistics and explanatory power are not high, as only four out of eleven factors’ q statistics are close to 

0.5: median income (0.4239), percentage of bachelors (0.4328), COVID-19 positive rate (0.5060), and 

testing site density (0.4994). The determination of other factors, such as median age (0.0744), percentage 

of white (0.0687), and transit stop density (0.1702), is relatively weak. 

Influencing factor q-
statistic 

p-
value 

Population density 0.4398 0.0000 

Median income 0.4239 0.0000 

Median age 0.0744 0.0128 

White (%) 0.0687 0.0229 

Bachelor (%) 0.4328 0.0000 

Public transport (%) 0.1400 0.0001 

COVID positive rate 0.5060 0.0000 

Testing site density 0.4994 0.0000 

Transit road density 0.2910 0.0000 

Non-transit road density 0.1591 0.0000 

Transit stop density 0.1702 0.0000 

Table 3. Factor detection results of influencing factors 
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To solve the limitation of factor detection, which only considers the determination ability of single factor 

on the spatial accessibility, the interaction detector was used to identify the interaction between any two 

factors, as shown in Table S2. In most cases, the q-statistics of two intersecting factors are greater than 

the q-statistic of single factors, suggesting that the interaction probe of detection factors has a significant 

effect on the accessibility. In detail, the intersection between the COVID-19 positive rate (X7) and the 

testing sites density (X8) generates the most reinforcing effect, as the q-statistic is about 0.6757. X7 also 

intersects with the population density (X1) and transit stop density (X11) to produce relatively strong 

enhancing effects. The intersection between X1 and bachelor proportion (X5) and median income (X2) 

generates a reinforcing effect as well. In summary, we found that the influence of most detection factors 

on the accessibility is not independently mutual or reflective of nonlinear enhancement. 

4. Discussion 
Based on the multimodal network, the results reveal strong spatial variations in testing site accessibility 

among different travel modes. People have the highest access to testing sites in NYC by personal vehicles 

or taxi. In contrast, public transportation tends to be less accessible to testing sites, while pedestrians have 

the lowest access to testing sites. The spatial accessibility to testing sites by walking and public transit 

was found to share similar trends, as the accessibility by these modes is higher in the downtown area but 

decays gradually to the edge of NYC. However, there is no clear clustering pattern in car accessibility to 

testing sites. Such differences may be due to the variation in the road network. The sidewalk, subway, and 

bus routes all share similar geographic distribution, as most of them pass through the downtown area and 

hardly stretch to some tracts near the NYC boundary. The road system of cars, however, displays a 

relatively even spatial distribution. In addition, compared with walking, buses, and subways, cars can 

drive with more flexibility and mobility. Therefore, even some outskirts districts are associated with 

fewer testing sites and relatively more inconvenient public transit services. Thus, cars can still connect 

people in these regions with high accessibility to testing sites. 

From the results of factor detection in the Geodetector model, several demographic and socioeconomic 

variables, including the COVID-19 positive rate, testing site density, and population density, were proved 

to have a positive and significant relationship with accessibility to testing sites. However, the explanatory 

power of these variables is not high. After introducing the intersection detector to explore the mutual 

effect of any two factors, we found that their influence on the accessibility exceeds that of single detection 

factors. The intersection between the COVID-19 positive rate and population density, transit stop density, 

and testing site density have a greater impact on the accessibility. This suggests that the spatial 

heterogeneity of accessibility is decided by multiple intersecting factors rather than a single one. 

There were some important strengths in this study. First, this study was conducted at the micro-level, 

accessibility was measured across census tracts, and the influencing factors of this accessibility were 

analyzed at the ZCTA level for a more precise outcome. Second, four common travel modes in NYC 

were included in building a multimodal network with a comprehensive transit system. The disparities of 

accessibility through various travel behaviors were highlighted, and fill the gap of many previous studies 

that only focused on a single transport mode in the measurement of accessibility. Finally, when using 

Geodetector to explore the influencing factors, the performance of four various discretization methods 

was evaluated based on the q-statistics and p-values from the result. The most appropriate discretization 

method could adapt to the spatial heterogeneity of different influencing factors as possible. 

Regarding the COVID-19 testing site accessibility, we found that NYC displays a high degree of inequity 

in distribution. Based on the finding, the following suggestions are recommended for the urban planners 



Anran Zheng 
Capstone final report 
MUSA 800  
 

10 
 

and policy makers of NYC. The testing capacity should be expanded by increasing capacity at existing 

sites and adding new sites, especially in Staten Island, eastern Queens, and southern Brooklyn County. 

The testing sites should be distributed as evenly as possible, and their service range should be expanded, 

which can satisfy the needs of more people. In addition, as transportation facilities are important in the 

connection of people with access to testing sites, new transit routes with optimally located stops and 

improved transit frequency should be built strategically. This will provide people without car ownership 

or the elderly more access to testing resources. Furthermore, for regions with low access to healthcare 

services, visiting healthcare programs should be implemented, and more COVID-19 self-testing kits 

should be allocated to reduce severe inequity in accessibility. 

A few limitations existed in our study. In building the non-transit road network, choosing the population 

weighted centroid as the network origin might be less accurate than the residential address. This approach 

might suffer from aggregation bias, and the utilization of more disaggregated data can address such a 

problem. Moreover, it was somewhat arbitrary to consider a 15-minute travel time as a threshold in 

defining the accessibility. This travel time is not suitable for everyone, especially those with disabilities, 

the elderly, and people who have COVID-19 symptoms and need an urgent test. Finally, the multimodal 

network did not take into account factors that cause potential travel delays, such as time waiting for transit, 

transfers between different transit lines, and traffic jams. Therefore, the accessibility value calculated 

from our research might be lower than it is the reality. More elements, such as the peak and off-peak 

driving speed, and the bus and subway time schedule, should be incorporated to build a more accurate 

multimodal network. 

5. Conclusion 
This study first conducted both spatial autocorrelation and kernel density to explore the spatial clustering 

pattern of COVID-19 testing sites in NYC. Based on the OSM and GTFS dataset, a GIS-based 

multimodal network, which included travel by car, bus, subway, and walking, was built to show the 

variations in spatial accessibility in NYC. The relationship between spatial accessibility with 

socioeconomic and demographic characteristics was explored through the Geodetector model. The results 

show strong spatial heterogeneity across NYC by different travel modes. The urban core, where 

population, well-developed transit facilities, and testing sites are concentrated, provides people with more 

access to testing sites than the edge of NYC. Compared with walking and public transit, traveling by car 

is more effective and efficient in expanding people’s accessibility to testing sites. The COVID-19 positive 

rate, population density, and testing site density contribute to such spatial variation in accessibility. To 

improve the equity of accessibility, the capacity of testing sites and transit facilities should be expanded in 

regions with low accessibility to testing sites, with a focus on people with low mobility. Future research 

should identify approaches for building a more accurate multimodal network in accessibility measurement, 

such as trying different travel time thresholds and setting rational travel time delays based on the traffic 

situation and transit schedule. 
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Supplementary material 
All the data, figure and coding scripts can be found on the author’s Github: 

https://github.com/Anran0716/Anran-Zheng-AccessTestingSite 

methods quantile natural jenk geometric interval equal interval 

factors q-statistic p-value q-statistic p-value q-statistic p-value q-statistic p-value 

Population density 0.4398 0.0000 0.4346 0.0000 0.4219 0.0000 0.4002 0.0000 

Median Income 0.4239 0.0000 0.4301 0.0000 0.3362 0.0000 0.4239 0.0000 

Median Age 0.0744 0.0128 0.0612 0.0730 0.0682 0.0240 0.0744 0.0128 

White(%) 0.0687 0.0229 0.0679 0.0216 0.0674 0.0218 0.0687 0.0229 

Bachelor (%) 0.4328 0.0000 0.4094 0.0000 0.4024 0.0000 0.4328 0.0000 

Public Transport (%) 0.1400 0.0001 0.1696 0.0000 0.1571 0.0000 0.1400 0.0001 

COVID Positive Rate 0.5060 0.0000 0.4819 0.0000 0.4446 0.0000 0.4873 0.0000 

Testing site Density 0.4994 0.0000 0.5361 0.0000 0.5403 0.0000 0.5053 0.0000 

Transit Road Density 0.2910 0.0000 0.2895 0.0000 0.2864 0.0000 0.2254 0.0034 

Non-Transit Road Density 0.1591 0.0000 0.1823 0.0059 0.1580 0.0099 0.2340 0.0186 

Stop density 0.1702 0.0000 0.1128 0.0230 0.1365 0.0001 0.1087 0.0419 

Table S1. The comparison of results from four different data classification methods 

https://doi.org/10.1080/19475683.2011.625977
https://doi.org/10.3390/ijgi10090627
https://covid-19-giscorps.hub.arcgis.com/
https://covid-19-giscorps.hub.arcgis.com/
https://download.bbbike.org/osm/bbbike/NewYork/
https://transitfeeds.com/p/mta
https://data.cityofnewyork.us/browse?category=Health&amp;q=covid
https://github.com/Anran0716/Anran-Zheng-AccessTestingSite
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factor 1 factor 2 value  comparison result 

x1 x3 0.4781 (Min(x1,x3),Max(x1,x3)) Weakened, single factor nonlinear 

x3 x10 0.2838 (Min(x3,x10),Max(x3,x10)) Weakened, single factor nonlinear 

x3 x6 0.2626 (Min(x3,x6),Max(x3,x6)) Weakened, single factor nonlinear 

x4 x10 0.3538 (Min(x4,x10),Max(x4,x10)) Weakened, single factor nonlinear 

x4 x6 0.3472 (Min(x4,x6),Max(x4,x6)) Weakened, single factor nonlinear 

x4 x9 0.4376 (Min(x4,x9),Max(x4,x9)) Weakened, single factor nonlinear 

x3 x9 0.3964 <Min(x3,x9) Weakened, nonlinear 

x1 x10 0.521 >Max(x1,x10) Enhanced, double factors 

x1 x2 0.6661 >Max(x1,x2) Enhanced, double factors 

x1 x4 0.5775 >Max(x1,x4) Enhanced, double factors 

x1 x8 0.6235 >Max(x1,x8) Enhanced, double factors 

x1 x9 0.5663 >Max(x1,x9) Enhanced, double factors 

x2 x10 0.529 >Max(x2,x10) Enhanced, double factors 

x2 x3 0.5334 >Max(x2,x3) Enhanced, double factors 

x2 x4 0.4787 >Max(x2,x4) Enhanced, double factors 

x2 x5 0.5359 >Max(x2,x5) Enhanced, double factors 

x2 x6 0.5988 >Max(x2,x6) Enhanced, double factors 

x3 x4 0.3173 >Max(x3,x4) Enhanced, double factors 

x3 x5 0.551 >Max(x3,x5) Enhanced, double factors 

x3 x7 0.615 >Max(x3,x7) Enhanced, double factors 

x3 x8 0.5437 >Max(x3,x8) Enhanced, double factors 

x4 x5 0.4979 >Max(x4,x5) Enhanced, double factors 

x4 x7 0.567 >Max(x4,x7) Enhanced, double factors 

x4 x8 0.6174 >Max(x4,x8) Enhanced, double factors 

x5 x10 0.5863 >Max(x5,x10) Enhanced, double factors 

x5 x6 0.6152 >Max(x5,x6) Enhanced, double factors 

x5 x7 0.563 >Max(x5,x7) Enhanced, double factors 

x6 x10 0.3433 >Max(x6,x10) Enhanced, double factors 

x6 x7 0.6233 >Max(x6,x7) Enhanced, double factors 

x6 x8 0.6097 >Max(x6,x8) Enhanced, double factors 

x6 x9 0.5522 >Max(x6,x9) Enhanced, double factors 

x7 x10 0.6359 >Max(x7,x10) Enhanced, double factors 

x7 x8 0.6757 >Max(x7,x8) Enhanced, double factors 

x7 x9 0.6166 >Max(x7,x9) Enhanced, double factors 

x8 x10 0.5618 >Max(x8,x10) Enhanced, double factors 

x8 x9 0.5506 >Max(x8,x9) Enhanced, double factors 

x9 x10 0.4256 >Max(x9,x10) Enhanced, double factors 

x1 x5 0.6546 >x1+x5 Enhanced, nonlinear 

x1 x6 0.5675 >x1+x6 Enhanced, nonlinear 

x1 x7 0.6709 >x1+x7 Enhanced, nonlinear 

x2 x7 0.5579 >x2+x7 Enhanced, nonlinear 

x2 x8 0.6704 >x2+x8 Enhanced, nonlinear 
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x2 x9 0.58 >x2+x9 Enhanced, nonlinear 

x11 x1 0.5527 >Max(x1,x11) Enhanced, double factors 

x11 x10 0.3129 >Max(x10,x11) Enhanced, double factors 

x11 x2 0.5946 >Max(x2,x11) Enhanced, double factors 

x11 x3 0.3146 >Max(x3,x11) Enhanced, double factors 

x11 x4 0.3538 >x4+x11 Enhanced, nonlinear 

x11 x5 0.5863 >Max(x5,x11) Enhanced, double factors 

x11 x6 0.3433 >x6+x11 Enhanced, nonlinear 

x11 x7 0.6359 >Max(x7,x11) Enhanced, double factors 

x11 x8 0.5467 >Max(x8,x11) Enhanced, double factors 

x11 x9 0.4663 >Max(x9,x11) Enhanced, double factors 

 

Table S2. Results of interaction detection (X1 - Population density, X2 - Median Income, X3 - 

Median Age, X4 - White(%), X5 - Bachelor (%), X6 - Public Transport (%), X7 – COVID-19 

Positive Rate, X8 - Testing site Density, X9 - Transit Road Density, X10 – Non-transit Road Density, 

X11 - Stop density) 

 

 

 

 


